skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shang, Xiaojun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 3, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available September 8, 2026
  4. Network Function Virtualization (NFV) emerges as a promising paradigm with the potential for cost-efficiency, manage-convenience, and flexibility, where the service function chain (SFC) deployment scheme is a crucial technology. In this paper, we propose an Ant Colony Optimization (ACO) meta-heuristic algorithm for the Online SFC Deployment, called ACO-OSD, with the objectives of jointly minimizing the server operation cost and network latency. As a meta-heuristic algorithm, ACO-OSD performs better than the state-of-art heuristic algorithms, specifically 42.88% lower total cost on average. To reduce the time cost of ACO-OSD, we design two acceleration mechanisms: the Next-Fit (NF) strategy and the many-to-one model between SFC deployment schemes and ant-tours. Besides, for the scenarios requiring real-time decisions, we propose a novel online learning framework based on the ACO-OSD algorithm, called prior-based learning real-time placement (PLRP). It realizes near real-time SFC deployment with the time complexity of O(n), where n is the total number of VNFs of all newly arrived SFCs. It meanwhile maintains a performance advantage with 36.53% lower average total cost than the state-of-art heuristic algorithms. Finally, we perform extensive simulations to demonstrate the outstanding performance of ACO-OSD and PLRP compared with the benchmarks. 
    more » « less